Preschool Child with Displaced Odontoid Synchondrosis Fracture Treated by Surgical Management Showing Excellent Remodeling

Narendra Reddy Medagam¹, Charanjit Singh Dhillon¹, Chetan Shashikant Pophale¹, Nilay Prafulsinh Chhasatia¹, Anandkumar Khatavi¹

Learning Point of the Article:
In small children, with odontoid synchondrosis fractures associated with significant displacement and angulation, posterior C1-C2 fusion is a better option providing more stability. Furthermore, one can expect significant remodeling of the fracture within this population.

Abstract

Introduction: Cervical spine injuries in the children are unusual, and an incidence rate of 1.5–3% of all the spinal fractures has been reported. The cartilaginous end plate between the dens and the body of the axis usually ossifies at the age of 5–7 years. This anatomical characteristic has been attributed to odontoid synchondrosis fractures in young children. However, odontoid process fractures are rare in children and only a few cases have been reported in literature.

Case Report: We report a case of a displaced odontoid synchondrosis fracture in a 2-year-old girl with anterior subluxation of C1 over C2 vertebra. This was treated with a posterior atlantoaxial fusion using sublaminar wiring. Immediate post-operative radiography showed partial reduction of the displaced odontoid fragment on C2 body with residual step deformity with angulation at the fracture site. Follow-up at 1 year showed excellent remodeling.

Conclusion: Synchondrosis fractures of the odontoid are rare and usually found in children under 7 years of age. Most of these patients can be treated by external immobilization alone. However, in small children with significant displacement and angulation, posterior C1-C2 fusion is a better option providing more stability. Furthermore, one can expect significant remodeling of the fracture within this population.

Keywords: Preschool child, odontoid synchondrosis fracture, remodeling.

Introduction

Cervical spine injuries in the children are unusual, and an incidence rate of 1.5–3% of all the spinal fractures has been reported[1, 2]. The cartilaginous end plate between the dens and the body of the axis usually ossifies at the age of 5–7 years. This anatomical characteristic has been attributed to odontoid synchondrosis fractures in young children[3, 4, 5]. However, odontoid process fractures are rare in children and only few cases have been reported in the literature[3, 6]. We report a case of a displaced odontoid synchondrosis fracture in a 2-year-old girl with anterior subluxation of C1 over C2 vertebra. This was treated with a posterior atlantoaxial fusion using sublaminar wiring. Immediate post-operative radiography showed partial reduction of the displaced odontoid fragment on C2 body with residual step deformity with angulation at the fracture site. Follow-up at 1 year showed excellent remodeling.

Case Report

A 2-year-old female child was brought to our tertiary care center with alleged history of road traffic accident followed by complaint of inability to hold the neck upright. She had to support her chin with her wrists. Examination revealed restricted neck range of movements with tenderness at the...
Odontoid process fractures in the pediatric population are a rare entity, and the literature is sparse, with only a few cases reported [3, 6]. It is unusual to have bony injuries below the age of 8 years due to relative elasticity of the growing spine [7]. The axis is the most commonly involved vertebra in children and odontoid synchondrosis fractures are usually seen in patients <7 years of age [8]. The management of such fractures in the pediatric population remains unclear.

Discussion

Her immediate post-operative radiography revealed a step deformity with angulation at the fracture site (Fig. 3). At a 1-year follow-up, CT scan of the cervical spine revealed excellent remodeling at the fracture site with bony posterior fusion at C1-C2 (Fig. 4). She had terminal limitation of rotations of the neck, but sagittal alignment was satisfactory.

In view of significant displacement of the odontoid with associated atlantoaxial subluxation, a decision was taken to perform reduction and posterior atlantoaxial fusion using sublaminar wiring. The procedure was performed through a posterior approach. Sublaminar wires were passed under C1 posterior arch and C2 lamina, and reduction was done under fluoroscopy guidance. A small diameter mesh cage filled with hydroxyapatite crystals was placed between the C1 posterior arch and the C2 lamina to maintain C1-C2 vertebral alignment and aid fusion. Surgery was carried out without any complications and postoperatively, she was maintained in Philadelphia collar for a period of 8 weeks. The post-operative period was uneventful.

Odontoid process fractures in the pediatric population are a rare entity, and the literature is sparse, with only a few cases reported [3, 6]. It is unusual to have bony injuries below the age of 8 years due to relative elasticity of the growing spine [7]. The axis is the most commonly involved vertebra in children and odontoid synchondrosis fractures are usually seen in patients <7 years of age [8]. The management of such fractures in the pediatric population remains unclear.

In our patient, there was significant displacement of the odontoid (approximately 70%) with C1-C2 subluxation which was associated with >30° angulation approaching the current consensus for the surgical fixation. There was a step deformity in her immediate post-operative radiograph which remodeled...
well by the end of 1 year. Excellent remodeling potential of the pediatric cervical spine has been reported by Bhagat et al. following in situ fusion in similar fractures in children[10].

Conclusion
Synchondrosis fractures of odontoid are rare and usually found in children under 7 years of age. Most of these patients can be treated by external immobilization alone. However, in small children with significant displacement and angulation, posterior C1-C2 fusion is a better option providing more stability. Furthermore, one can expect significant remodeling of the fracture within this population.

References